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Abstract--On the basis of the adjoint approach, different types of oscillatory mechanisms of instabilities 
in two-layer systems are investigated. It is shown that for Marangoni convection oscillatory instability 
may become the only possible mechanism of instability in the system. The evolution of non-linear regimes 
of oscillations is analysed. For different aspect ratios different kinds of bifurcations, including period 
doubling bifurcation and transition to the steady state through a homoclinic bifurcation, are observed. 
The combined action of Marangoni and Rayleigh mechanisms of instabilities can lead to oscillations even 
in the case where "pure" Marangoni and "pure" Rayleigh instabilities are stationary. It is shown that 
the presence of the surface active agents may lead to the specific types of oscillations: the frequency of 
oscillations is proportional to the wave number in the long-wave limit. Oscillatory Marangoni convection 
in systems with a deformable interface is investigated. 
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1. I N T R O D U C T I O N  

It is well known that when heating a one-layer system with a free surface from below one 
observes stationary convection cells generated by buoyancy (Rayleigh-Benard convection) and/or 
thermocapillary effects (Marangoni-Benard convection). However, it was known already in the 
1950s (Sternling & Scriven 1959), that systems of fluids with an interface (especially two-layer 
systems) are subject to oscillatory instabilities, too. From a mathematical point of  view, such an 
instability is a consequence of the non-selfadjointness of  the linearized stability problem. The 
physical nature of  oscillatory instabilities is, however, quite diverse. 

In the present paper, we summarize some theoretical predictions concerning different kinds of  
oscillatory instabilities in order to facilitate their recognition. 

2. F O R M U L A T I O N  OF T H E  P R O B L E M  

Let the space between two horizontal solid plates be filled by two immiscible viscous fluids. 
The plates are kept at different constant temperatures; the full temperature difference is 0. 
Two variants of  hea t ing- - f rom below and from above- -a re  considered. The coefficient of  the 
surface tension is the linear function of temperature: a = a0 __+ aT. Except section 7, the interface 
is assumed to be flat (y  = 0). All variables referring to the upper fluid, which occupies the region 
0 < y < at,  are marked by subscript 1, and the variables referring to the lower fluid, a z < y < 0, 
are marked by subscript 2. The densities, coefficients of  dynamic and kinematic viscosities, heat 
conductivities, temperature diffusivities and heat expansion coefficients are respectively equal to Pi, 
r/i, vi, ~ ,  X;, fl,, i = 1, 2. The lateral boundaries of  both layers x = 0 and x = l are rigid and well 
conducting. 

We introduce the notation p = P I P 2 ,  r/ =~ ]1 /q2 ,  V =Vl/V2, l~ = / ~ l / K 2 ,  Z =~1/~2, fl =i l l~ t2 ,  
L = l /al ,  a = aE/al. As the units of  length, time, the stream function, velocity and the temperature 
we choose, respectively, al, a~/vl, Vl, vt/a~ and 0. 

We write the complete non-linear equations of  free convection for the stream function ~k~, 
the vorticity q~ and the temperature T i in the following dimensionless form: 
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O(o, Oq,, O4', Oq,, 04~, dr ,  
Ot -t Oy Ox Ox Oy = d~ A~i + G b , ~ x ,  

d~ G gill Oa~ AqJ, = - ~ . , .  = 

0Ti 0~i0T~ 0~k~0T~ ~CiAT~'p=V 1 
Ot + Oy Ox Ox Oy = Z~ 

dt = b l  = el = 1, d2 = 1/v, b2 = 1/fl, c 2 = l /z ;  [1] 

G is the Grashof number and P is the Prandtl number (i = 1, 2). 
The conditions satisfied at the interface are the vanishing of the normal components of velocities 

and the continuity conditions of the tangential components of velocities, the tangential stresses, 
the temperatures and the heat fluxes: 

0~/ I  0~/]2 
y =0:~1  = ~2=0 ,  = ay 0y' 

0T 1 0T2 
T ~ = T 2 ,  x - -  Oy Oy ' 

OT! 
~b2 = q~bl + Mr Ox 

Mr = ~_pM_, M :-- eOal. [2] 
rltZ1 

where Mr is the analogue of the Marangoni number M. 
Here we do not explicitly write conditions on rigid boundaries y = 1, y = - a ,  x = 0 and x = L, 

which are obvious. 
The boundary-value problem ([1] and [2]) is determined by eight physical (G, P, Mr, q, v, x, ~, fl) 

and two geometrical (L, a) parameters. This problem has a solution corresponding to the 
mechanical equilibrium state which is characterized by the absence of any motion and constant 
vertical temperature gradients A~ = - s / ( 1  + ~a); Az = - s ~ / ( 1  + xa) (s = 1 for heating from below 
and s = - 1  for heating from above). The instability of this stage generates the thermocapillary 
convection. As a first step, one considers the growth of infinitesimally small disturbances of the 
stream function $,. and temperature Ti on the background of the equilibrium temperature gradients. 
The linearized convection equations take the form 

(2 + ico)D~/i = - d~D2q/, + ikGbi T~, 

--(2 + ico)r~-ikO,Ai = G DT,, 
P 

d 2 
D = ~ - k 2, [31 

k is the wave number, 2 + ico is the complex decay rate. 
Then conditions at the solid boundaries and at the interface are: 

y = 1: I/¢ 1 = ~ = T l = 0 ,  

y = --a: $2= ~06= T2=0, 

y =0:  St = $2 =0,~k~ = $~, 

Tl = 7"2, xT~ = T~, 

~l~'( -- ikMrT1 = ~k~. [4] 

Depending on the ratio of the Marangoni number and the Grashof number, the thermocapillary 
or thermogravitational mechanism of instability plays the dominant role. 
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3. THERMOGRAVITATIONAL CONVECTION 

In the case of Rayleigh instability (G ~ 0, M = 0), the oscillations can arise in two-layer systems 
in the situation where the instability conditions are satisfied simultaneously in both layers. This 
kind of instability is connected with the interaction between convection motions in both layers 
and has nothing to do with the gravity-capillary waves, although it can generate some passive 
deformations of the interface. 

Let us introduce the "local" Rayleigh numbers, characterizing the stability conditions in each 
layer. 

gfllAla~ gfl2A2a'~ 
R 1 - , R 2  - -  , - -  

vl~l v2x2 

If these Rayleigh numbers differ considerably, the intensive convective motion arises only in one 
fluid; in the second fluid the weak induced motion is present (Simanovskii 1979). If R~ and R2 are 
close, heat and hydrodynamic interactions on the interface play the dominating role. The work 
of Busse (1981) was the first where the situation with close values of the local Rayleigh numbers 
was considered. The author constructed two stationary neutral curves, corresponding to the arising 
of convection in each layer, the minima of which lie at considerably different values of the 
wave numbers. In the work of Gershuni & Zhukhovitsky (1982) it was shown that, in contrast 
to the one-layer case, the two-layer system may become unstable to the oscillatory disturbances 
(a physical example is the transformer oil-formic acid system). An example where the oscillatory 
neutral curve becomes the most "dangerous" is presented in figures 1 and 2 (Gilev et aI. 1987). 
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F igure  1. Neu t r a l  curves  for the mode l  sys tem (q = 0.123, v = 15.408, x = 0 . 4 1 ,  )~ = 0.714, fl = 0.672, 
P = 306.32, a = 0.54). 
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F igure  2. The dependence  of  the f requency of  neu t ra l  osci l la tory d is turbances  on wave number .  
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The linearized boundary-value problem ([3] and [4]) was solved by the Runge-Kutta  method. 
The oscillation region occupies the interval I k [ < km ~ 5.8. The neutral curve minimum is realized 
at k = k c --- 3.8 for oscillatory disturbances with frequency e)c ~- 0.051. 

Further, Rasenat et al. (1989) returned to investigation of the situation considered by Busse 
(1981) and obtained the oscillatory neutral curve. In the recent work of Colinet & Legros (1994), 
the existence of the oscillatory instability was confirmed: in the non-linear region the authors found 
the travelling wave, going to the left or to the right. 

We shall not discuss in detail here the numerous attempts to consider the active influence of 
the interface deformation at the onset of convection (see for example, Benguria & Depassier 1987; 
Wahal & Bose 1988; Benguria & Depassier 1989 etc.). Let us note only that an oscillatory 
instability, essentially connected with deformations, was discovered in the case of small differences 
between fluid densities (IP - 1  I<<1) by Renardy & Joseph (1985). 

4. T H E R M O C A P I L L A R Y  CONVECTION (LINEAR THEORY) 

There are several types of oscillatory instability in the case of the Marangoni convection (G = 0, 
M ¢ 0). The first type, discovered by Sternling & Scriven (1959), does not need an interface 
deformation and generates longitudinal temperature waves. The original theory of Sternling & 
Scriven was developed in the case of two layers of infinite depths. As a matter of fact, it deals 
with the short-wavelength limit of the neutral curve, and cannot describe the most dangerous 
disturbances, which have wavelengths of the same order as the layer depth. Typically, the 
oscillatory instability is replaced by a stationary one in the case of finite depths of layers 
(Reichenbach & Linde 1981; Nepomnyashchy & Simanovskii 1983c). However, longitudinal 
Marangoni waves can be found in several fluid systems. 

As an example, let us consider the transformer oil-formic acid system. The dependences of sMr 
and co on k are shown in figure 3. 

For k < k* the stationary mode of instability occurs for heating from below, and for k < k* 
the stationary mode of instability occurs for heating from above (line 1). In the long-wave region 
the oscillatory mode of instability appears (line 2). In the final point of the oscillatory neutral 
curve on the monotonic one, frequency co vanishes. In the long-wave limit frequency is constant. 
The more exotic situation can be found for the model system: oscillatory instability becomes the 
only possible mechanism of instability in the system (Nepomnyashschy & Simanovskii 1983c), 
see figure 4. 
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Figure 3. Transformer oil-formic acid system (a = 2). Monotonic (1) and oscillatory (2) neutral curves; 

frequency co dependence on wave number k (3). 
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F igure  4. Osc i l la tory  neu t ra l  curve  (1) and  f requency 09 dependence  on  wave n u m b e r  k (2) for the sys tem 
wi th  pa rame te r s  r / =  v = 0.5; x = X = P = a = 1. 

5 .  D E V E L O P E D  R E G I M E S  O F  T H E R M O C A P I L L A R Y  C O N V E C T I O N  

Let us now consider the non-linear convection regimes for the previous model system filling 
up the closed cavity (a = 1, L--2 .5)  (Nepomnyashchy & Simanovskii 1983a). The non-linear 
boundary-value problem [1] and [2] was solved by the finite-difference method [a computational 
procedure was developed by Simanovskii (1979)]. At small values of Marangoni number the system 
maintains the equilibrium state: in the subcritical region (Mr < Mr*~- 15700), initial four-vortex 
disturbance decreases in an oscillatory manner. With the increase in the Marangoni number the 
equilibrium state becomes unstable and regular convective oscillations develop in the system. 
For Mr < Mr* we shall characterize the intensity of motion by the variables 

I L/2 t* 1 
Sl(t) = dx dyOl (x , y ,  t), 

,]o o 

S2(t) = dx dy Ol(x,y,  t). 
/2 

The motion is of a four-vortex structure symmetrical about the vertical axis x = L/2  and for it 
S~ = - $2. The dependence of $1 (t) on different values of Marangoni number is shown in figure 5. 
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Figure 6. Thermocapillary oscillation forms for Mr = 2.5 x 104; L = 2. 
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Figure 7. Phase trajectory for thermocapillary oscillations (Mr = 2.5 x 104; L = 2). 

Close to the threshold the oscillations are nearly sinusoidal (line 1), With the increase in Mr the 
oscillations become essentially non-linear, their period grows (lines 2 and 3) and steady motion 
is further established [the oscillatory cycle is transformed into the separatrix of a saddle point 
(saddle-node)]. 

A more complicated sequence of transitions is observed for L = 2. As for the case L = 2.5 an 
oscillatory motion arises as a result of the instability of the equilibrium. With the increase in Mr, 
there is a doubling bifurcation of the period. The dependence of $1 (t) takes on a more complicated 
nature (see figure 6). The typical phase trajectory is shown in figure 7. A further increase in Mr 
leads to the establishment of steady state through homoclinic bifurcation. 

6. THE COMBINED ACTION OF THE M A R A N G O N I  AND R A Y L E I G H  
MECHANISM OF INSTABILITY 

The oscillatory instability is much more typical under the combined action of the thermogravita- 
tional and thermocapillary mechanisms of instability. Let us consider the water-silicon oil DC N 
200 system (P = 6.28, ~/= 0.915, v = 1.16, x = 0.169, Z = 0.472, ~ = 7.16, a = 1.6) (Gilev et  al, 
1987b). When Mr = 0 the threshold Grashof number for the excitation of convection in the upper 
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Figure 8. Neutral curves for a water-silicone oil No. 200 system (a = 1.6). 

fluid G¿ = 270 (figure 8, line 1), while for excitation in the lower fluid G2 = 2860 (line 3); both 
instability modes are monotonic. As Mr increases, the neutral curves approach each other (curves 
4 and 5; Mr = 201). Subsequently, they hook and separate into disconnected parts, lying in the 
long-wave and short-wave regions (curves 6 and 7, respectively; Mr---210). 

At Mr > 125 an oscillatory interval appears on the neutral curve for disturbances in the upper 
fluid. It is preserved after hook up of the monotonic neutral curves, linking the long-wave and 
short-wave fragments (line 2 in figure 8, Mr = 210). At Mr > 400 the oscillatory instability becomes 
the more dangerous• 

7. THE I N F L U E N C E  OF S U R F A C E  ACTIVE A G E N T S  ON 
T H E R M O C A P I L L A R Y  C O N V E C T I O N  

Let the surface active agents (SAA) that lower the surface tension be concentrated at the 
interface. We assume that the concentration of  SAA is low, so that its molecules form a "surface 
gas". The transport of  SAA along the interface is described by the equation 

where Vx and vy are the horizontal components of  velocity at the interface and Do is the surface 
diffusion coefficient. At equilibrium the SAA concentration at the interface is constant: F = Fo. 
The linearized condition for tangential stresses at the interface takes the form 

q@'( - ik(MrTl + BF) = @~, 

&o Foal 
g = ~F t/2v 1 [6] 

The appearance of  parameter B is stipulated by the presence of  SAA. 
After having been made dimensionless and linearized [5] takes the form 

(2 + ico -- DskZ)F = ik$'l (O), Os = Do/v,. [7] 

Eliminating F from [6] and [7] we obtain the condition on the interface: 

( - 
y = O : q O ' ( - i k  M r T ~ + 2 _ D s k 2 + i o 3 0 ~  = . [8] 
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Figure  9. N e u t r a l  curves  for values  of  p a r a m e t e r  B = 0 (lines, 1, 2); 2 (3, 4); 8 (5, 6); a = 2. 

In the case where B = 0 the boundary-value problems [3], [4] and [8] were solved by Nepomnyashchy 
& Simanovskii (1985). For the water-DC N 200 system (a = 2, Ds = 10 -3) the graph of function 
sMr(k) for the monotonic mode has discontinuity (figure 9, line 1); in the long-wave region where 
heating from above the instability is oscillatory in character (figure 9, line 2). 

With heating from below (sMr > 0), the presence of SAA leads to the splitting of the monotonic 
neutral curves to a monotonic one and an oscillatory one (Nepomnyashchy & Simanovskii 1989). 
The monotonic neutral curves lie in the region of higher values of Mr and are not shown in the 
graph. For heating from above (sMr > 0), with an increase in B the final point of the oscillatory 
neutral curve on the monotonic curve is shifted towards higher values of k. Attention should be 
drawn to the difference between the long-wave asymptotic form of frequency co for oscillations 
caused by SAA (it can be shown analytically that co is of the wave number order) and that for 
pure thermocapillary oscillations with B = 0 (co is constant). Note, that we also found very similar 
oscillations generated by SAA for Rayleigh instability and for a specific non-Rayleigh type of 
instability ("anticonvection") when heating from above (see Simanovskii & Nepomnyashchy 1993). 

Unlike the oscillations described in previous sections, which arise only in two-layer systems, the 
SAA-induced oscillations also exist in one-layer systems (Palmer & Berg 1972). 

8. SYSTEMS WITH A DEFORMABLE INTERFACE 

In the case of Marangoni convection the transverse oscillatory instability is also possible. 
The instability generates waves of the surface deformation. For one-layer systems, this type of 
instability was considered by Garcia-Ybarra & Velarde (1987) and investigated in detail in a series 
of papers (see, for example, Chu & Valarde 1989; Henneberg et al., 1992 and references therein). 
An attempt to develop a non-linear theory can be found in the papers of Garazo & Velarde (1991) 
and Nepomnyashchy & Velarde (1994). The analysis of the two-layer problem was fulfilled by 
Nepomnyashchy & Simanovskii (1991). 

On the interface we impose the conditions for normal and tangential stresses, the conditions of 
continuity of the velocity vector, temperature and the normal component of the heat flux, and 
the kinematic condition relating the deviation of the boundary h and the velocity of liquids on the 
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Figure 10. Dependence of  the parameter sMr  (a) and of  the frequency co (b) on the wave number k 
(Ga =0 ,  curve 1; 10 4, 2; 10 e, 3; 2 x 10 6, 4). 

interface. As a result of  transfer to the plane y = 0 the conditions on the deformed interface take 
the form: 

t - 1  t P, - P 2  + [ G a ( p - I  _ 1) + Wk2]h = 2(v,y - q v2y) 

Ulx = 1)2x , - - ( 2  "q'- io))h = Vly = v2y 

- ) h  
rl-  r2=\ l+~ca  J ~ T ~ - - T 2 ~ - - O ,  

W = f f o a l / t ] l V l ,  

Ga = ga~/v 2 is the Galileo number. 
Since the effect of  deformation of  the interface is assumed to be greatest in the case of  similar 

liquid densities, we will consider a model system with p = 0.999. The other parameters of  the system 
are as follows: Z = a = W = 1, v = 0.5. The deformation of  the interface in this system may lead 
to the onset of  oscillatory instability but even in the absence of deformation the mechanical 
equilibrium is absolutely stable. The neutral curve is pocket-shaped [figure 10(a)], i.e. to any value 
of  the wave number  on a certain interval k < kt (Ga) there are two values of  sMr.  The dependence 
of  the oscillation frequency e) on the wave number  k on both branches of  the neutral curve is shown 
in figure 10(b). The threshold value of Mr tends to infinity as Ga---, ~ which indicates that this 
mode of  instability is essentially related to the deformation of the interface. 

In conclusion, let us mention a new direction for investigation: convective instabilities in 
multilayer systems. The longitudinal oscillatory instability has been found, which is connected with 
the interaction of  thermocapillary motions generated by both interfaces, and is much more typical 
than in the two-layer case (Georis et al. 1993; Simanovskii et al. 1993). Very recently, we have found 
a new type of  long-wavelength transfer oscillatory instability which is produced by a hybridization 
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of two long-wavelength stationary modes. In the long-wave limit, frequency of these oscillations 
is proportional to the squared wave number. 
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